O átomo é a menor partícula capaz de identificar um elemento químico e participar de uma reação química.
O estudo do átomo se iniciou na Grécia antiga com o filósofo Leucipo e seu discípulo Demócrito: para eles, o átomo era o menor componente de toda a matéria existente. Sendo, então, impossível dividí-lo em partes menores.
Ao desenrolar da história, diversos cientistas e estudiosos tentaram definir o átomo quanto a sua forma, dando origem a diversas teorias sobre sua constituição física. Surgiram, então, os modelos atômicos.
Modelos Atômicos
Modelo de Dalton (bola de bilhar) - 1803
Para John Dalton, a teoria de Leucipo e Demócrito era bastante coerente. Segundo este modelo, os átomos eram as menores partículas possíveis, assumiam formas esféricas e possuíam massa semelhante caso fossem correspondentes ao mesmo elemento químico.Modelo de Thomson (pudim de passas) – 1897
Através da descoberta do elétron (partícula constituinte do átomo com carga elétrica negativa), o modelo de Dalton ficou defasado. Assim, com os estudos de Thomson, um novo modelo foi idealizado.De acordo com este novo modelo, o átomo era uma esfera de carga elétrica positiva incrustada com elétrons, com carga negativa, tornando-se assim eletricamente neutro. Ficou conhecido como pudim de passas.
Modelo de Rutherford-Bohr (sistema planetário) – 1908/1910
Rutherford ao bombardear partículas alfa sobre uma lâmina de ouro percebeu que a maioria atravessava a lâmina. Enquanto que uma menor parte sofria pequeno desvio, e uma parte ínfima sofria grande desvio contrário à trajetória.A partir desse experimento, foi possível perceber que os átomos não eram maciços como se pensava, mas dotados de grande espaço vazio. Assim como, que eram constituídos por um núcleo carregado positivamente e uma nuvem eletrônica carregada negativamente. Essa nuvem eletrônica era composta por elétrons que giravam em órbitas elípticas ao redor do núcleo (assim como os planetas ao redor do sol).
Também constatou-se que a maior parte da massa de um átomo se concentra no núcleo (que rebatia as partículas alfa no sentido contrário do bombardeio).
Mas ainda havia um enigma: De acordo com a teoria das ondas eletromagnéticas, os elétrons ao girarem em torno do núcleo perderiam gradualmente energia, começariam a descrever um movimento helicoidal, e simplesmente cairiam no núcleo. Mas, como isso pode acontecer se os átomos são estruturas estáveis?
Dois anos após Rutherford ter exposto o seu modelo atômico, Niels Bohr o aperfeiçoou. A teoria de Bohr pode ser fundamentada em três postulados:
1) Os elétrons descrevem, ao redor do núcleo, órbitas circulares com energia fixa e determinada. Sendo denominadas órbitas estacionárias;
2) Durante o movimento nas órbitas estacionárias, os elétrons não emitem energia espontaneamente;
3) Quando um elétron recebe energia suficiente do meio externo, realiza um salto quântico: migra entre dois orbitais. E, como tende a voltar ao orbital inicial, a energia recebida é emitida na mesma quantidade para o meio. Sendo essa energia (recebida e emitida) a diferença energética entre os dois orbitais.
Apesar de bastante difundida no ensino médio, o modelo atômico de Rutherford-Bohr é, em parte, ineficiente. Pois:
- Os elétrons, na prática, não realizam trajetórias circulares ou elípticas ao redor do núcleo;
- Não deixa claro o porquê de os elétrons não perderem energia durante seu movimento;
- Não explica a eletrosfera de átomos que possuem muitos
elétrons.
Estrutura de um Átomo
Os átomos são compostos de, pelo menos, um próton e um elétron. Podendo apresentar nêutrons (na verdade, apenas o átomo de hidrogênio não possui nêutron: é apenas um elétron girando em torno de um próton).- Elétrons – Os elétrons são partículas de massa muito pequena (cerca de 1840 vezes menor que a massa do próton. Ou aproximadamente 9,1.10-28g) dotados de carga elétrica negativa: -1,6.10-19C. Movem-se muito rapidamente ao redor do núcleo atômico, gerando campos eletromagnéticos.
- Prótons – Os prótons são partículas que, junto aos nêutrons, formam o núcleo atômico. Possuem carga positiva de mesmo valor absoluto que a carga dos elétrons; assim, um próton e um elétron tendem a se atrair eletricamente.
- Nêutrons – Os nêutrons, junto aos
prótons, formam o núcleo atômico. E, como possuem massa bastante
parecida, perfazem 99,9% de toda a massa do átomo. Possuem carga
elétrica nula (resultante das sub-partículas que os compõem), e
são dispostos estrategicamente no núcleo de modo a estabilizá-lo:
uma vez que dois prótons repelem-se mutuamente, a adição de um
nêutron (princípio da fissão nuclear) causa instabilidade
elétrica e o átomo se rompe.
Para entender o que existe e acontece a sua volta, o ser humano procura classificar fenômenos. Isso é, separa esses objetos ou fatos, a partir de algum critério preestabelecido segundo o interesse e o objetivo do estudo. A partir da observação do comportamento dos átomos, aqueles grupos que possuíam um mesmo comportamento passaram a ser denominados como elemento químico.
Mas o que é mesmo um átomo? O átomo é partícula fundamental da matéria. O nome átomo foi dado pelo filósofo grego Demócrito, que viveu entre 546 e 460 a.C.. Ele acreditava que todos os materiais possuiriam uma menor parte, que seria indivisível (a = não; tomos = divisões). O cientista inglês John Dalton, retomou as ideias de Demócrito 23 séculos depois, em 1808. A partir de experimentações, tirou algumas conclusões:
- Toda matéria é formada por diminutas partículas, os átomos.
- Existe um número finito de átomos na natureza.
- A combinação entre átomos iguais ou diferentes origina os materiais.
"Pudim de passas" Tales de Mileto (384-322 a.C.), muito antes disso, já estava preocupado com o comportamento da matéria. Vários estudos baseados nas suas ideias levaram à conclusão de que essa partícula formadora da matéria era dotada de cargas opostas entre si. Aí estavam as evidências de que o átomo é divisível.
Em 1897, o físico inglês Joseph John Thomson propôs um modelo atômico conhecido como "pudim de passas", onde existiam simultaneamente os dois tipos de cargas, hoje conhecidas como positivas e negativas.
Com a descoberta da radioatividade, foi possível definir que as partículas de carga positiva, os prótons, concentravam-se em uma região central do átomo, o núcleo. E os elétrons, de carga negativa, circundavam esse núcleo.
Alguns pesquisadores, porém, identificavam uma falha nesse raciocínio: se cargas de mesma natureza se repelem, como o núcleo, que possuía apenas cargas positivas, mantinha-se estável?
O modelo de Rutherford Para explicar esse fato, foi sugerida a existência de partículas entre os prótons que eliminariam a repulsão entre eles. Em 1932, James Chadwick descobriu no núcleo a existência de partículas sem carga, os nêutrons.
Ernest Rutherford (1911) propôs um modelo muito parecido com o sistema solar: o sol seria o núcleo e os planetas, os elétrons - sendo a matéria constituída principalmente por espaços vazios.
Em 1913, Niels Bohr ampliou o modelo atômico de Rutherford propondo que os elétrons giravam ao redor do núcleo em camadas, ou níveis eletrônicos, sem perder energia. Em cada órbita, os elétrons têm energia específica: quanto mais próximo do núcleo menor a quantidade de energia; quanto mais distante, maior a energia do elétron.
Assim, quando um elétron recebe energia, ele pode saltar para camadas mais distantes do núcleo; inversamente, se ele salta para camadas mais próximas do núcleo ocorre a liberação de energia.
Partículas subatômicas Hoje, sabemos que os átomos são formados por partículas subatômicas como os prótons, nêutrons, elétrons, pósitrons, quarks, neutrinos e mésons. Nesse momento, nos interessam apenas as subpartículas fundamentais: os prótons, nêutrons e elétrons.
- Os prótons são partículas eletricamente carregadas.
- Os elétrons também são partículas eletricamente carregadas.
- Os nêutrons, como o próprio nome diz, não possuem carga, são neutros.
- Os prótons e nêutron têm aproximadamente a mesma massa.
- Os elétrons possuem massa aproximadamente 2.000 vezes menor que a de um próton, portanto ela é desprezível em relação à massa atômica.
Se ganha energia, o elétron pode passar para as camadas mais externas do átomo. Essa energia pode ser suficiente para que o elétron deixe seu átomo de origem, o que muda a condição elétrica do átomo, mas não altera a sua massa.
O comportamento atômico Mas o que define o comportamento dos átomos? Como vimos anteriormente, os prótons e nêutrons estão nas regiões mais internas dos átomos: os núcleos. Os elétrons estão nas mais externas, a eletrosfera.
As partículas subatômicas que possuem carga elétrica de mesma intensidade, mas opostas, são os prótons e os elétrons. O balanço entre as partículas subatômicas que possuem cargas elétricas dará a característica elétrica do material. A massa é dada pela quantidade de prótons e nêutrons, já que os elétrons têm massa desprezível.
O número de elétrons de um átomo pode variar, mudando a carga total do átomo. Segundo o modelo atômico de Bohr, os elétrons podem ganhar energia e passar a camadas eletrônicas mais distantes do núcleo.
Nas reações químicas, as mudanças ocorrem com a eletrosfera. Seja por atração de outros núcleos atômicos ou por terem recebido energia suficiente, os elétrons podem deixar seu átomo de origem. Esse não perde massa, pois, como já foi visto anteriormente, a massa do elétron é desprezível.
Em um átomo, normalmente, o número de prótons e nêutrons é invariável. Sendo assim, o próton é a única partícula que possui carga e não deixa facilmente o átomo. Portanto é o número de prótons que caracteriza um elemento químico, ou seja, é o número de prótons que indica qual átomo fará parte de um determinado grupo.
Radioatividade A radioatividade está ligada diretamente ao núcleo do átomo. Em uma reação nuclear, o átomo emite radiação (raios alfa, beta e gama), o que provoca alterações no núcleo, em geral, fazendo com que se transforme em outros elementos. Às vezes, porém, pode apenas ocorrer uma mudança da massa total do átomo, sem que se altere o número atômico.
Quando o número de prótons muda em um átomo, as características do material são alteradas porque o núcleo atômico passa a ter massa e carga diferentes. Dessa forma, ele deixa de ser o mesmo átomo de antes, transformando-se em um outro elemento químico.
O número de nêutrons pode variar em um átomo sem mudar as características elétricas, pois os nêutrons interferem apenas na massa. Os átomos que possuem mesma quantidade de prótons e quantidades diferentes de nêutrons são conhecidos como isótopos.
- Os átomos podem ser eletricamente neutros (número de prótons igual ao número de elétrons).
- Os átomos podem ser eletricamente carregados (número de prótons diferente do número de elétrons).
- Os átomos que possuem o mesmo número de prótons recebem o
mesmo nome. São conhecidos como átomos de um mesmo elemento
químico
Nenhum comentário:
Postar um comentário